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Abstract 
     We present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase 
behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and 
anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn-Hilliard diffusion 
kinetics. The free energy density function is formulated based on the regular solution model taking into 
account the possible solute-surface interaction near the surface. The coherency strain energy is computed 
using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a 
zero surface traction boundary condition. Employing a phase-separating LiXFePO4 electrode particle for 
Li-ion batteries as a model system, we perform parametric three-dimensional computer simulations. The 
model permits the observation of surface phase behaviors that are different from the bulk counterpart. For 
instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an 
unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed 
spinodal decomposition mode. We systematically investigate the influences of major factors on the 
kinetic surface phase behaviors during the diffusional process. Our simulation study provides insights for 
tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.  
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Highlights 
• A phase-field model for diffusional phase behaviors of a solid surface is presented. 
• A phase-separating LiXFePO4 electrode particle is employed as a model system. 
• The model reproduces the well-established surface spinodal decomposition modes. 
• The effects of major physical factors on the surface phase behaviors are examined. 
• The surface phase configuration can control the internal phase microstructure. 
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1. Introduction 
     The successful development of electrode materials for Li-ion batteries is intimately connected 

to the understanding of their phase transitions during electrochemical cycles. The 

thermodynamics and kinetics of the phase behaviors significantly affect the charge storage 

capacity and the rate performance of batteries. A number of associated scientific challenges at 

the electrode level have been proposed, leading to extensive computational and experimental 

investigations over a decade for better understanding the relevant phase transformation 

mechanisms [1]. To elucidate the governing physical mechanisms of the phase behaviors, 

LiXFePO4 has been intensively studied as a model electrode system since it is considered as a 

promising cathode material for large-scale applications [2]. For example, Delacourt et al. 

observed various possible metastable solid solution phases upon cooling although LiXFePO4 is a 

strong phase-separating material [3]. Yamada et al. demonstrated a miscibility gap in LiXFePO4 

at room temperature [4]. Meethong et al. experimentally showed the particle size effects on the 

miscibility gap in nanoscale LiXFePO4 [5]. They also discussed the roles of strain 

accommodation during lithiation/delithiation cycles in the phase transformation behavior [6]. 

Gibot et al. suggested that the particle size and stoichiometry of LiXFePO4 determine whether it 

undergoes single- or two-phase lithiation/delithiation processes using numerous experimental 

and analytical methods [7]. Van der Ven et al. provided a theoretical explanation on the effects 

of coherency strain on the phase stability of intermediate solid solutions of LiXFePO4 at low 

temperatures [8], and Wagemaker, Mulder, and Van der Ven theoretically discussed the role of 

surface and interfacial energy in the phase stability of nanosized LiXFePO4 particles [9]. Malik, 

Zhou, and Ceder showed the possible single-phase transformation pathway of LiXFePO4 at very 

low overpotential employing canonical Monte Carlo simulations [10]. Ichitsubo et al. explored 

the effects of elastic energy and interfacial energy on the phase separation behavior of LiXFePO4 

in terms of thermodynamics and kinetics emphasizing the concept of a preferred wavelength of 

spinodal decomposition [11].  

     The phase-field approach [12-16] has been regarded as one of the most suitable computational 

methods for modeling the phase microstructures of electrode materials. The first development of 

the phase-field model for the electrochemical intercalation process in a simple two-phase system 

was done by Han and collaborators [17]. As an extension of Han et al.’s model [17], Singh, 
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Ceder, and Bazant developed the so-called Cahn-Hilliard reaction (CHR) model based on the 

gradient thermodynamics employing the depth-averaged concentration concept that is valid for 

the surface-reaction-limited kinetics [18]. The model incorporates the Li insertion/extraction 

reaction at the electrode/electrolyte interface for phase-separating systems such as LiXFePO4, and 

proposes a scheme based on phase transformation wave (or intercalation wave) kinetics. Burch 

and Bazant investigated the effects of LiXFePO4 particle size on the miscibility gap and 

demonstrated the shrinking characteristics upon decreasing particle size employing the CHR 

model [19]. Bai, Cogswell, and Bazant investigated the effect of the current density on the phase 

transformation [20], and Cogswell and Bazant discussed the effect of the coherency strain on the 

kinetics of the phase separation [21] and the nucleation behavior [22] in LiXFePO4 nanoparticles 

also employing the CHR model. A detailed review of the CHR model is also available [23]. 

Apart from the CHR model, other types of phase-field models have been also developed and 

applied to LiXFePO4. Tang et al. proposed the phase-field model to study the crystalline to 

amorphous phase transformation in nanoscale olivines and assessed the effects of particle size, 

applied electrical overpotentials, and misfit strain on the phase stabilities and phase 

transformation pathways [1, 24, 25]. In addition, Tang, Belak, and Dorr explained the physical 

origin of the anisotropic growth morphology of the phase boundary between Li-rich and Li-lean 

phases employing the phase-field model [26]. They found that the misfit strain and the one-

dimensional Li diffusivity play a key role in determining the growth morphology. Recently, 

Ichitsubo et al. studied the effects of coherent strain energy on the behaviors of phase separation 

taking place through nucleation-and-growth as well as spinodal mechanisms and discussed the 

stabilities of phase boundaries employing the phase-field method [27]. 

     Surfaces often also play a significant role in determining the surface phase segregation and/or 

phase transformation behaviors, since a battery electrode usually consists of a number of solid-

state particles. A solid surface is a two-dimensional structural defect where many abrupt changes 

of physical properties may occur; hence, its presence is likely to modify the thermodynamics and 

kinetics of phase transformations. Therefore, the understanding of surface effects on phase 

microstructures is an additional critical factor for controlling the internal phase behaviors and 

achieving better battery performance. In light of this, we present our comprehensive phase-field 

model for simulating phase microstructure evolution in the presence of surfaces. Employing 

LiXFePO4 as a model system, we show how our model is able to reproduce known surface phase 



4"
"

transition mechanisms, and can be used to systematically assess the effects of various physical 

factors on the surface phase evolution. 

 

2. Phase-field model 
     To describe the diffusional phase behavior in a binary system, we employ the solute 

composition X(r )  as a field variable. The free energy functional of an entire solid-state system 

in the context of the diffuse-interface description [28] is given by: 

                                   ∫ +∇+=
V ijcohgradinc rdXfXfTXfF ,)],()(),([ 3ε


                                         (1) 

where incf  is the incoherent free energy density of a local solid solution, gradf  is the gradient 

energy density ( XX ji
c
ij ∇⋅∇⋅= )2/(κ  with the anisotropic gradient energy coefficient c

ijκ ), and 

cohf  is the coherency strain energy density arising from the compositional inhomogeneity.  

     We employ a free energy density function based on the regular solution model. Solute atoms 

and phases interact with surfaces to relax the chemical and/or elastic strain energy in a solid 

particle. To model the interaction between )(rX   and surfaces, the surface structure is described 

by the domain parameter ψ  in the present model as shown in Fig. 1(a). The interior of a particle 

is represented by 1=ψ , the outside of a particle is represented by 0=ψ , and the surface is 

represented by 10 <<ψ . In order to describe the solute-surface interactions, we introduce an 

additional explicit contribution to the free energy function, resulting in the variation of the local 

thermodynamics near surfaces. It should be mentioned that in our model, the solute-solute 

interaction is not altered by the presence of surfaces (i.e., the regular solution parameter does not 

change near surfaces). Therefore, the incoherent free energy density is given by  

           ,/])()]1ln()1(ln[)1([),( minc VXgmXXXXTRXXTXf ⋅⋅−−⋅−+⋅⋅⋅+−⋅⋅Ω= ψ        (2) 

where Ω  is the regular solution parameter, R is the gas constant, T is the temperature, and Vm is 

the molar volume of a solid. The last term ])([ Xgm ⋅⋅− ψ  represents the solute-surface 

interactions [29-31], where m is the interaction parameter that determines the strength of the 

interaction and )(ψg  (= 22 )1( −ψψ ) is the phenomenological function of a domain parameter 

associated with the topology of the interaction potential that is non-zero only at the surface. 

Solute segregation at the surface takes place for m>0, whereas solute depletion is induced when 
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m<0. We note that this simplified description could be refined by considering available analytical 

models that can incorporate specific possible physical contributions to the surface segregation 

energetics. Such factors include the surface energy change upon solute composition variation, 

atomic mismatch relaxation, excess entropy contribution, and so on [32]. In addition, anisotropic 

characteristics could be added to the formulation of m, reflecting, for example, the anisotropic 

surface energetic characteristics of the LiXFePO4 system [33]. For simplicity, we have chosen to 

neglect such effects here. 

     The coherency strain energy fcoh in Eq. (1) is perturbed by the presence of a free surface due 

to zero traction force at the surfaces (See Fig. 1(a)). To obtain the elastic solutions with the zero 

surface traction boundary condition ( 0=⋅−= jiji nT σ , where ),,( 321 nnnn = "is the unit surface 

normal), we apply the smoothed boundary method [34] to the mechanical equilibrium equation 

using the domain parameter ψ  (i.e., we solve 0)/( =∂⋅ jij xσψ ). According to Khachaturyan’s 

microelasticity theory, the stress tensor can be represented by )( 0
klklklijklij C εδεεσ −+= , where 

Cijkl  is the elastic modulus tensor, klε "is the homogeneous strain tensor," klδε "is the heterogeneous 

strain tensor, and 0
klε  is the eigenstrain tensor. Substituting )//()2/1( ijjikl xuxu ∂∂+∂∂⋅=δε , 

where u "is the elastic displacement, into the mechanical equilibrium equation with the smoothed 

boundary method yields [34] 
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The original mechanical equation is reproduced when jx∂∂ /ψ  vanishes and ψ  becomes 1 (i.e., 

in the particle interior). We note that the unit surface normal can be expressed by the gradient of 

the domain parameter as ψψ ∇∇=
 /n . The zero surface traction boundary condition can be 

expressed by" 0/)/( =∇∂∂⋅−= ψψσ


jiji xT . Therefore, the third term in Eq. (3) becomes zero by 

the zero surface traction boundary condition. The elastic modulus of a compositionally non-

uniform solid solution is inherently inhomogeneous, and is assumed to linearly vary with the 

solute composition X as XCXCXC B
ijkl

A
ijklijkl ⋅+−⋅= )1()( , where A

ijklC  and B
ijklC "are the elastic 

moduli of two end phases of a solid solution (e.g., A
ijklC  and B

ijklC "can be elastic moduli of FePO4 
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and LiFePO4, respectively, with Li composition X in the case of a LiXFePO4 solid solution). The 

homogeneous strain tensor in Eq. (3) when the surfaces are allowed to relax and the elastic 

modulus is inhomogeneous is computed by ][)( 01 ><−><>=< −
ijijijklkl XC δσσε   [35-37], where 

∫>=<
V ijklijkl dVXCVXC )()/1()( , ∫>=<

V klijklij dVXCV 00 )()/1( εσ , 

∫>=<
V klijklij dVXCV δεδσ )()/1( , and V is the volume of a particle. The eigenstrain tensor due to 

the compositional inhomogeneity in Eq. (3) is modeled as Xm
klkl ⋅= εε 0 , where m

klε  is the misfit 

strain between two end phases. Employing klε  and 0
klε , we solve Eq. (3) using the Fourier 

spectral iterative-perturbation method [38, 39].  

     The temporal and spatial evolution of the composition X is governed by the Cahn-Hilliard 

nonlinear diffusion equation [40] as follows: 
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where Mij  is the anisotropic interdiffusion mobility and )/( XF δδ  is the variational derivative of 

F (Eq. (1)) with respect to X. Eq. (4) is numerically solved using the semi-implicit Fourier-

spectral method [41, 42].  

 

3. Computer simulations and discussions 

     We employ the physical parameters of orthorhombic LiXFePO4 (space group Pnma) from the 

literature. For the incoherent thermodynamic free energy density function (Eq. (2)), the regular 

solution parameter (Ω ) is set to be 12kJ/mol  [24, 26], the molar volume (Vm) of LiXFePO4 is set 

to be molm /108.43 36−×  [24, 26], and the temperature (T) is set to be 298K. The isotropic 

gradient energy coefficient ( 0)( ,332211 =≠== jicij
ccc κκκκ ) is chosen to be mJ /105 10−× , resulting 

in ~ 2/119 mmJ  of the interfacial energy. For the calculation of the coherency strain energy, the 

elastic constants for FePO4 (FP) are chosen to be 9.17511 =FPC , 6.15322 =
FPC , 0.13533 =FPC , 

6.2912 =FPC , 0.5413 =FPC , 6.1923 =
FPC , 8.3844 =

FPC , 5.4755 =FPC , 6.5566 =FPC , and those for LiFePO4 

(LFP) are chosen to be 9.13811 =LFPC , 0.19822 =LFPC , 0.17333 =LFPC , 8.7212 =LFPC , 5.5213 =LFPC ,

8.4523 =LFPC , 8.3644 =LFPC , 6.5055 =FPC , 6.4766 =FPC  (in GPa) in Voigt notation [43]. The 
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components of the misfit strain tensor ( m
ijε ) between FP and LFP phases are computed assuming 

perfect interfacial coherency and using the lattice parameters of the two phases (FePO4 and 

LiFePO4): nmaFP 98267.0= , nmbFP 57944.0= , nmcFP 47832.0=  and nmaLFP 03289.1= , 

nmbLFP 60069.0= , nmcLFP 46905.0=   [6], resulting in 05111.0/)(11 =−= FPFPLFP
m aaaε , 

03667.0/)(22 =−= FPFPLFP
m bbbε , 01976.0/)(33 −=−= FPFPLFP

m cccε , and )(when  0.0 jim
ij ≠=ε . 

The mechanical equilibrium (Eq. (3)) and the Cahn-Hilliard (Eq. (4)) equations are solved in 

dimensionless forms (by finc / E , )/( 2lEc
ij ⋅κ , lx /Δ , ElMt ⋅⋅Δ )/( 2

22 , and ECijkl / , where E (=

39 /10 mJ ) is the characteristic energy and l (=1nm) is the characteristic length). For simulating 

surface phase behaviors, we first generate the diffuse-interface surface structure represented by 

the domain parameter ψ  in a three-dimensional (168Δx×168Δx×168Δx) computational grid 

with Δx=1nm under the periodic boundary conditions. To mimic the plate-like shape particle 

geometry that is commonly observed in experiments [44], we employ a single particle with flat 

surfaces and the particle thickness d in the computational grid as illustrated in Fig. 1(b). We then 

carry out parametric simulations and monitor the phase separation behavior of an unstable solid 

solution of Li0.5FePO4 (i.e., overall Li composition (X0) =0.5 and 0/
0

22 <∂∂
=XX

Xf , where 

cohinc fff += ) into Li-rich and Li-lean phases. 

 

3.1. Effect of solute-surface interactions  

     We first examined the effects of solute-surface interactions at the initial stage of phase 

separation of an unstable solid solution in a particle with d=158Δx. To study the effect of the 

interactions on the microstructural features and their evolution kinetics, we simulated six 

different microstructures with the increasing interaction parameter m in Eq. (2). Fig. 2(a) shows 

the simulated microstructures at the early stages (t=50000Δt) for different magnitudes of m, and 

Fig. 2(b) shows the volume fraction of Li-rich phases (with X>0.8) as a function of time. The 

white/gray/black colors of a simulated microstructure within a particle represent Li-

rich/unseparated/Li-lean phases. In all cases, phase separation is initiated at surfaces. The 

separated surface phase microstructures display different features, and the separation kinetics 

becomes faster as m increases, as shown in Figs. 2(a) and (b). This may be explained in terms of 
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the operating surface phase separation mechanisms. When m=0.0, there is no explicit interaction 

between solute atoms and surfaces. Instead, the surface phase separation occurs by the so-called 

surface mode of coherent spinodal decomposition (SCSD) proposed by Tang and Karma [45] 

due to the relaxation of coherency strain energy at surfaces. It is mediated by the zero surface 

traction boundary condition. Therefore, the separated microstructure displays a surface spinodal 

domain structure with compositional wave vectors parallel to surfaces as indicated on the a-b 

cross-section view (i.e., lateral compositional modulation along surfaces as shown in Fig. 2(c)).  

     On the other hand, a different phase separation mode seems to operate as the strength of the 

solute-surface interaction (m) increases in Fig. 2(a). To further isolate the mode operated by only 

the solute-surface interaction term, we carried out a controlled simulation without coherency 

strain energy contributions for non-dimensionalized m*=0.25. As shown in Fig. 2(d), the 

interaction induces surface segregation of Li that acts as the dominant perturbation of the surface 

composition over natural thermal fluctuations, resulting in surface-initiated spinodal 

decomposition. Its surface phase microstructure displays the alternating layer structure with a 

compositional wave vectors normal to the surface. This is the so-called surface-directed spinodal 

decomposition mode (SDSD) [46-50], which arises due to the preferential attraction of a 

particular component (Li in this case) to surfaces. Therefore, as m increases in Fig. 2(a), another 

spinodal decomposition mode (i.e., SDSD) starts operating in addition to the existing coherency 

strain relaxation-induced spinodal mode (i.e., SCSD). As a result, the surface phase 

microstructure for m*=0.25 (see Fig. 2(e)) displays two different types of compositional waves. 

The results in Fig. 2 confirm that our model reproduces the possible well-established surface 

spinodal decomposition modes that arise from mechanistically different processes. Note that 

similar simulated phase behaviors in a thin film have been also reported [51]. We also checked 

that the bulk coherent spinodal decomposition mode operates in the particle interior at later 

stages of evolution in all of our tested cases, as proposed in Ref. [45]. 

     It is expected that the abovementioned surface modes become increasingly dominant over the 

bulk modes as the particle size decreases. To investigate the relative contributions of the surface 

modes with decreasing particle size, additional systematic simulations were performed for 

several different particle size dimensions (d) based on the setup in Fig. 1(b). For better 

computational efficiency, we chose the computational grid size depending on the particle 
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dimension as (d+10)Δx× (d+10)Δx× (d+10)Δx (The 10Δx grid space was assigned to the outside 

of a particle). The diffusion mobility ( ijM ) in Eq. (4) was assumed to be isotropic, and two 

different interaction parameters (m*=0.00 and m*=0.25) were employed. The overall composition 

(X0) was also chosen to be 0.5. Figs. 3(a) and (b) shows the a-b cross-section view of simulated 

phase microstructures with different size dimensions (d) at t=100000Δt for m*=0.0 and m*=0.25, 

respectively. As clearly shown in the figures, the operating surface phase separation mode 

becomes increasingly significant to the phase microstructure of the entire particle as d decreases. 

For example, when the particle dimension is extremely small (d=14nm), the internal 

microstructure of the particle with m=0.0 is predominantly determined by SCSD, whereas that 

with m*=0.25 is predominantly determined by SDSD. As a result, the phase microstructures 

within the particle interiors are very different depending on the magnitudes of m* (i.e., strength 

of the surface-solute interaction). Significantly, our simulation results indicate the existence of a 

critical particle size dimension (here, between 14nm and 26nm) below which the internal phase 

microstructure should be entirely controlled by the surface modes.  

 

3.2. Effect of anisotropic and inhomogeneous diffusion mobility 

     The physical properties of a solid particle can be anisotropic due to its intrinsic 

crystallographic structure [52]. For example, the diffusion mobility of Li in a LiXFePO4 particle 

is anisotropic since its crystal structure is orthorhombic: in particular, diffusion along the b 

crystallographic axis can be much faster than other directions [53, 54]. To examine the role of 

anisotropic diffusion mobility in the presence of a surface, we conducted simulations employing 

a particle (d=158Δx) with M11(=M33)/M22=0.001. We chose m=0.0 in order to focus on the effects 

of the diffusion mobility anisotropy without complication from explicit surface-solute 

interactions. Fig. 4(a) shows the snapshots of temporal evolution during the phase decomposition 

at the early stage. First of all, the phase separation first occurs at surfaces as expected. Since we 

chose m=0.0, one might expect that only SCSD should operate according to the discussion in the 

previous section. However, in this case, the development of compositional fluctuations with 

wave vectors aligned along a and c directions may be extremely sluggish due to the low 

diffusion mobility along these directions. As a result, in contrast to Fig. 2, which is based on a 

case where diffusion mobility is isotropic (see Figs. 2(a) (m=0.0 case) or 2(c)) and the surface 
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compositional waves with wave vectors along a and c directions are dominant, the surface mode 

with the compositional wave vector aligned along the b direction seems to occur as shown in Fig. 

4(a) (see the microstructure at t=200000Δt and the a-b cross section view of the microstructure). 

It should be noted that this mode is qualitatively different from SDSD since no explicit solute-

surface interactions are included. 

     The results of Fig. 4(a) can be theoretically rationalized by examining the dispersion relation 

)(k


ω  for the given surface compositional wave of trki eeX ω

⋅~  where ),,( 321 kkkk =


 is the wave 

vector (k1, k2, and k3 correspond to a, b, and c directions, respectively) and ω  is the kinetic 

amplification factor. Linearizing Eq. (4) about X=X0 yields the following dispersion relation for 

the anisotropic system where the only diagonal components of ijM and c
ijκ  in Eq. (4) are nonzero: 
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where f !!  and incf !! are the second derivatives of  ][ cohinc ff +  and incf , respectively, with respect 

to X . B(n)  in Eq. (5) is the coherency strain energy density in the reciprocal space [55], and is 

given by mlmjliji
m
kl

m
ijijkl nnnCnB 00 )()( σσεε


Ω−= . Here, ||/ kkn


= , m

ijε  is the misfit strain tensor 

between the two end phases (e.g., FePO4and LiFePO4 in this case), m
klijklij C εσ =0 , 

lkikljij nnCn =Ω− )(1  , and the homogeneous ijklC  is denoted )( 0XCijkl  . We note that 0)( ≠nB   

inside the bulk and 0)( =nB   at the surface layers. A detailed derivation of Eq. (5), along with 

computed maximally growing wavelengths for the cases simulated in this article, is given in the 

Appendix.  

     Since f !! <0 for an unstable coherent solid solution, the form of Eq. (5) implies that we may 

expect that the spinodal decomposition mode with its wave vector aligned along with a particular 

direction i (among a, b, and c orthogonal directions) is likely to be dominant as iiM  becomes 

larger and/or c
iiκ  becomes smaller. At a surface layer (aligned along the a-c plane in our 

simulation setup) where the coherency strain energy vanishes due to the zero surface traction 

boundary condition, the decomposition modes with wave vectors along the a and c directions are 

predominant with respect to the b direction counterpart. The coherency strain energy below the 

surface layer acts as a barrier for the development of the compositional wave along the b 
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direction, while the development of the surface compositional waves along the a and c directions 

is free from any such barrier, resulting in the rapid formation of compositional waves with k1- 

and k3-wave vectors [45] if diffusion is sufficiently facile. However, if the diffusion mobility 

along the a and c directions is extremely low compared to that along the b direction, the 

occurrence of the compositional waves with k1- and k3-wave vectors may be suppressed. In this 

instance, compositional fluctuations with the k2-wave vector can also occur instead. Note that 

this relies on the assumption that the prohibition of the k1- and k3-wave development by the low 

diffusion mobility along the a and c directions is relatively more effective than the suppression 

of the k2-wave occurrence by the coherency strain energy. In fact, the non-dimensionalized 

amplification factor against the surface-localized compositional fluctuations with ),0,( 31 kkk =


 

parallel to surfaces ( ),0,( 31
,* kksurfω =5.17×10-5) is three orders of magnitude smaller than that 

against the fluctuation along )0,,0( 2kk =


 ( )0,,0( 2
,* ksurfω = 5.17×10-2) based on Eq. (A8) (or Eq. 

(5) with 0)( =nB  ). In other words, compositional fluctuations with the k2-wave vector do in fact 

grow much faster than others. However, their further propagation along the b direction into the 

bulk is suppressed by the coherency strain energy. To support this analysis, we carried out a 

comparative simulation with less anisotropic diffusion mobility M11(=M33)/M22=0.1 (see Fig. 

4(b)). It is clearly shown that the surface modes with wave vectors parallel to surfaces operate, 

and the compositional fluctuations with the k2-wave vector essentially almost vanish as the 

diffusion mobility along the a and c axes increases. 

     The later stage of the phase separation behavior with highly anisotropic diffusion mobility 

(M11(=M33)/M22=0.001) was also monitored as shown in Fig. 4(c). As the evolution proceeds, a 

thin surface layer of the Li-rich phase is formed by the mode with the k2-wave vector. 

Underneath this layer, this mode with the k2-vector seems to vanish due to the associated 

coherency strain energy and other modes by SCSD (especially, fluctuations with the k1-wave 

vector) operate, resulting in the spinodal phase domain structure. Intriguingly, the alignment of 

phase domains near the surface induces a chessboard-like microstructure within the particle 

interior. This is entirely due to the unique combination of anisotropic diffusion mobility and the 

presence of the surface. First, the domain structure near the surface is formed by SCSD. Next, 

the compositional waves propagate only along the b direction (normal to the surface) toward the 

particle interior since the uphill diffusional process occurs only along this direction. Therefore, 
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Li-rich and Li-lean phases alternate along the b direction, resulting in the continuous duplication 

of the surface phase domain structure in a reverse fashion as the phase separation along the b 

direction proceeds. Notably, this behavior illustrates that the internal phase microstructure of a 

particle can be tailored by controlling the surface phase morphology. As an example of 

controlling the phase microstructure, let us assume that the diffusion mobility near the surface 

( surf
ijM ) is isotropic due to its relative disordered structure, while that of a particle interior ( bulk

ijM ) 

is highly anisotropic (M11(=M33)/M22=0.001) (i.e., the diffusion mobility )(rMij
  of a particle is 

spatially inhomogeneous). From the analysis in section 3.1, the surface phase domain structure 

can be regulated by the diffusion mobility near the surface; we know that if the surface diffusion 

mobility is isotropic, more regular surface phase domains would first form, aligned along the 

surface as shown in Fig. 2(c) (due to SCSD). Next, the highly anisotropic diffusion mobility of 

the particle interior would result in continuous duplication along the b direction. Note that 

diffusion along the a and c directions in the particle interior is less likely to occur due to the low 

diffusion mobility along these directions. Fig. 5(a) shows the controlled microstructure at the 

early stage produced by the simulation, demonstrating the formation of chessboard-like 

microstructure with the finer compositional modulation at surfaces. In addition, we note that the 

phase domain spacing may be controlled by the overall composition (X0) as well as the 

interfacial energy according to the fact that the most dominant compositional wavelength (or 

maximally growing wavelength) ( maxλ ) at the early stage is determined by )(/22 0Xf !!− κπ  

[56]. This example further indicates that the internal phase microstructure can be tuned by 

controlling the surface phase morphology. In addition, the evolution of the volume fraction of Li-

rich phases (see Fig. 5(b)) for the above different types of diffusion mobility shows that the 

phase separation kinetics at the early stage is also largely controlled by the characteristics of the 

diffusion mobility near the surface.  

 

3.3. Effect of interfacial energy anisotropy 

     The orthorhombic crystal structure of LiXFePO4 may also result in anisotropy of the 

interfacial energy. Recently, it has been reported that }010{  interface between Li-rich and Li-

lean phases has significantly lower chemical interfacial energy than other interfaces (e.g., }100{  
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and }001{  interfaces) [57]. To investigate the effects of interfacial energy anisotropy on the 

surface phase behaviors while the surface modes are operating, we performed a sensitivity study 

by varying the interfacial energy. We varied only the c
22κ  component of the gradient energy 

coefficient tensor to control the interfacial energy of phase boundaries aligned along {010}  

planes fixing interfacial energies of other orientations (i.e., we fixed non-dimensionalized ,*
11
cκ =

,*
33
cκ =0.5). The diffusion mobility ijM  was deliberately chosen to be isotropic. Fig. 6(a) shows 

the simulated microstructures with varying }010{  interfacial energy at the early stage (at 

t=50000Δt). As the interfacial energy decreases, thin layers parallel to }010{  planes form at 

surfaces (as indicated in the cases with ,*
22
cκ =0.2). The origin of this surface effect can be traced 

to the discussion of Eq. (5), which suggests that compositional fluctuations with the k2-wave 

vector can become dominant if c
22κ  is small at the surface where the coherency strain energy is 

completely relaxed. More quantitatively, the computed amplification factors against the surface 

compositional fluctuations along )0,,0( 2kk =


 ( )0,,0( 2
,* ksurfω ) are 6.46×10-2, 8.60×10-2, and 

12.93×10-2 (in a dimensionless form) for ,*
22
cκ =0.4, 0.3, and 0.2, respectively. Comparing these 

with the ),0,( 31 kkk =


 counterpart ( ),0,( 31
,* kksurfω =5.17×10-2), we conclude that the growth of 

compositional fluctuations with the k2-wave vector should be dominant when ,*
22
cκ =0.2. As 

further confirmation of the impact of the interfacial energy anisotropy, we carried out a 

controlled simulation without any coherency strain energy contribution for 2.0,*
22 =
cκ . As 

expected, the phase boundaries aligned along }010{  planes form over the entire particle as a 

result of the development of the compositional waves with the k2-wave vector as shown in Fig. 

6(b). Note that this mode in the case with ,*
22
cκ =0.2 in Fig. 6(a) is suppressed below the surface 

due to the presence of coherency strain energy that acts as a barrier for the propagation of the 

compositional wave with the k2-wave vector. 

     Given the significant effects that anisotropies in diffusion mobility and interfacial energy can 

have on the surface phase microstructure (Figs. 4-6), we carried out an additional computer 

simulation that simultaneously include both effects. We used a diffusion mobility anisotropy of 

M11(=M33)/M22=0.001 and an interfacial energy anisotropy of ,*
22
cκ (=0.2)< ,*

11
cκ = ,*

33
cκ  (=0.5). Fig. 7 
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shows the a-b cross-section view of the snap shots during the phase evolution. Note that the 

domain-like structure along the surface layer is caused by not the regular spinodal decomposition 

modes but rather by random fluctuations introduced in the beginning of the simulation. It results 

in less uniform spacing between domains compared to other domain structures created by 

operating decomposition modes (for example, see Fig. 2(c) for comparison). The surface phase 

domain features seem to propagate through the particle interior as the separation evolves. 

Interestingly, the surface phase domains coarsen at the later stage (see the indicated surface 

phase microstructures at t=200000Δt and 300000Δt in Fig. 7) due to the relatively high 

interfacial energies along }100{  and }001{  planes compared to the interfacial energy along 

}010{  planes, whereas the early stage phase domain features continue propagating through the 

bulk as the evolution proceeds. We should emphasize here that when the diffusion mobility is 

highly anisotropic, the surface phase domain structure at the early stage controls the internal 

phase microstructure at the later stage, as demonstrated above.    

 

4. Summary 
     We have presented our comprehensive phase-field model for simulating diffusional phase 

microstructure evolution at solid surfaces. The model integrates the necessary physical 

contributions such as elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, 

interfacial energy anisotropy, and possible solute-surface interactions that may determine the 

surface phase behaviors. Employing the model and the physical parameters of LiXFePO4, we 

performed computer simulations to systematically examine the surface phase behaviors. Our 

phase-field model predicted two surface spinodal decomposition modes: the surface mode of 

coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We 

confirmed that the contributions of these surface modes become more significant factors in 

determining the phase microstructure of an entire particle as the particle size decreases. It was 

also shown that the features of the operating phase separation modes are strongly dependent on 

the diffusion mobility anisotropy and the interfacial energy anisotropy, leading to a variety of 

different possible surface phase microstructures. Furthermore, the phase microstructure of a 

particle interior at the later stage responds to the surface phase domain structure at the early stage 

when the diffusion mobility is highly anisotropic. Under these conditions, it should be possible to 



15"
"

tailor the internal phase microstructure of the solid particle by controlling the surface phase 

microstructure.  

     In summary, our results offer a more detailed understanding of operating phase separation 

mechanisms and their responses under various conditions, which can provide useful guidance for 

manipulating internal phase microstructures of materials. It should be noted that our integrated 

phase-field model is generic and can be therefore applied to any phase-separating materials 

system with surfaces. Consequently, our modeling and simulation framework may be utilized to 

find strategies for controlling and designing the diffusion-controlled phase microstructures of 

particles across a broad range of possible applications. 
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Figure captions 
Figure 1. Schematic descriptions of (a) the surface structure described by a domain parameter 

(ψ ) and (b) the computational setup for the simulations. 

Figure 2. (a) Simulated microstructures at t=50000Δt and (b) the Li-rich phase volume fraction 

evolution with time for different magnitudes of m*. The a-b cross-section view of 

microstructures at t=50000Δt for the cases where (c) only surface coherency relaxation, (d) only 

the solute-surface interaction, and (e) both surface coherency relaxation and the solute-surface 

interaction are considered. 

Figure 3. The a-b cross-section view of simulated phase microstructures with different size 

dimensions at t=100000Δt for (a) m*=0.00 and (b) m*=0.25.  

Figure 4. Temporal evolution of phase separation when the diffusion mobility of an entire 

particle is highly anisotropic (M11(=M33)/M22=0.001) at (a) the early stage and (c) the later stage, 

and (b) the cross-section view of the simulated microstructure with the less anisotropic diffusion 

mobility (M11(=M33)/M22=0.1). 

Figure 5 (a) The simulated microstructure of controlled surface phase domains by the spatially 

inhomogeneous diffusion mobility and (b) the evolution of Li rich phase volume fraction for 

different types of diffusion mobility configurations. 

Figure 6. (a) The a-b cross-section view of simulated microstructures for different }010{  

interfacial energies ( c
22κ ) at t=50000Δt, and (b) the controlled simulation result without the 

coherency strain energy contribution for the non-dimensionalized ,*
22
cκ =0.2. 

Figure 7. The a-b cross-section view of temporal phase evolution with both the anisotropic 

diffusion mobility (M11(=M33)/M22=0.001) and the anisotropic interfacial energy ( ,*
22
cκ  (=0.2)< 

,*
11
cκ = ,*

33
cκ  (=0.5)). 
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Appendix. Derivation of the dispersion relation )(k


ω  

     To derive the dispersion relation between the amplification factor ω and the corresponding 

wave vector k


 against the given compositional fluctuations ( rkit ee

⋅⋅ω~ ), we consider the early 

stage of the decomposition of a homogeneous solid solution with X=X0. Let us consider the 

governing equation (i.e., Cahn-Hilliard equation, Eq. (4)) incorporating anisotropic elasticity, 

diffusion mobility, and interfacial energy.  Since only diagonal components are non-zero in our 

case, the equation can be simplified as follows: 
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where ∫= V incinc rdfF 3 , ∫= V gradgrad rdfF 3 , and ∫= V cohcoh rdfF 3 . We linearize Eq. (A1) by 

assuming that the elastic modulus is homogeneous and 22 / Xfinc ∂∂  is constant [58]. We note that 

Fcoh becomes  

                                                       
,]~)([

)2(2
1

~
2

3

3

∫ ⋅=
Vcoh XnBkdF


π                                                 

(A2) 

when the elastic modulus is homogeneous and anisotropic according to Khachaturyan’s 

microelasticity theory [55], where mlmjliji
m
kl

m
ijijkl nnnCnB 00 )()( σσεε


Ω−= , ||/ kkn


= , m

ijε  is the 

misfit strain tensor between the two end phases (FePO4 and LiFePO4 in our case), m
klijklij C εσ =0 , 

lkikljij nnCn =Ω− )(1  , and tilde (~) represents the Fourier transform. For the homogeneous elastic 

modulus (Cijkl), we use the average elastic modulus (i.e., 00)1( XCXCC LFP
ijkl

FP
ijklijkl ⋅+−⋅= ). The 

variational derivative of Fcoh with respect to X then becomes 

                                                     
,]~)([

)2(~ 3

3
rki

V

coh eXnBkd
X
F  ⋅⋅⋅= ∫ πδ
δ

                                            
(A3) 

Eq. (A3) shows that δFcoh/δX is the inverse Fourier transform of ])([ XnB ⋅
 . Taking the Fourier 

transform of Eq. (A1) and using Eq. (A3), we obtain the following: 
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The solution of the above differential equation in a reciprocal space is determined as 

                        ).)(exp()0,(~             
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We note that ),(~ tkX


 represents the amplitude associated with each Fourier mode 

k  of 

compositional fluctuation (i.e., the Fourier transform of X) expressed in a Fourier representation: 
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Therefore, the general dispersion relation between the amplification factor ω and the 

corresponding wave vector k


 is determined as follows: 
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333
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111 nBkkkXfkMkMkMk ccc

inc
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We emphasize here that 0)( ≠nB   inside the bulk, and the dispersion relation inside the bulk is 

anisotropic due to the orientation-dependent )(nB  . On the other hand, at surfaces, 0)( =nB   due 

to the zero surface traction boundary condition. Therefore, the dispersion relation against the 

surface compositional fluctuations reduces to 

                ].)([][)( 2
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2
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333
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111 kkkXfkMkMkMk ccc

inc
surf κκκω +++##⋅++−=
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                   (A8) 

     The dispersion relation can provide the maximally growing wavelength λmax (or wave vector 

maxk


) that maximizes ω, which determines the characteristic length scale of surface/bulk phase 

domain structure. For example, when both diffusion mobility and interfacial energy are isotropic, 

the dispersion relation predicts that the maximally growing wavelength λmax (= ||/2 maxk


π ) is 

18.8 nm ( || maxk


=0.33 nm-1, aligned along n=(0.89,0.00,0.45)) inside the bulk and 11.1 nm at 

surfaces ( || maxk


=0.57 nm-1, aligned along the a-c plane (or normal to )0,,0( 2kk =


). We tabulate 

the computed maximally growing wavelengths and corresponding non-dimensionalized 
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amplification factors ( )( max
**

max k


ωω = ) in Table A1 using Eqs. (A7) and (A8) for the 

representative cases simulated in this article. 

 

Table A1. Maximally growing wavelengths and corresponding amplification factors 

Cases 
Bulk Surface 

bulk
maxλ  ,*

max
bulkω  surface

maxλ  ,*
max
surfaceω  

Isotropic ijM  

Isotropic c
ijκ  

18.8 nm 6.04×10-3 11.1 nm ( 2k


⊥ ) 5.17×10-2 ( 2k


⊥ ) 

Anisotropic ijM  

Isotropic c
ijκ  

21.5 nm 0.92×10-3 11.2 nm ( 2|| k


) 5.17×10-2 ( 2|| k


) 

Isotropic ijM  

Anisotropic c
ijκ  

18.8 nm 6.04×10-3 7.0 nm ( 2|| k


) 12.93×10-2 ( 2|| k


) 

Anisotropic ijM  

Anisotropic c
ijκ  

20.1 nm 1.18×10-3 7.0 nm ( 2|| k


) 12.93×10-2 ( 2|| k


) 

Note I) Anisotropic ijM : 
223311 001.0 MMM == , Anisotropic c

ijκ : 2.0,5.0 ,*
22 

,*
33

,*
11 === ccc κκκ  

Note II) (
2k


⊥ ): The maximally growing wave is aligned normal to )0,,0( 22 kk =


, ( 2|| k


): The maximally growing 
wave is aligned along with )0,,0( 22 kk =


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Fig. 6 
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Fig. 7 
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